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Passive optical networks (PONs) will be the pervasive choice in the design of
next-generation access networks. One possible solution to implementing passive
optical access networks is to rely on wavelength-division multiplexing (WDM).
Here we investigate the problem of providing real-time service to both hard and
soft real-time messages in conjunction with a conventional best-effort service
in WDM optical networks based on the single-hop passive-star coupler. We
propose an adaptive scheduling algorithm to schedule and manage the message
transmissions in the specified network. We have conducted extensive discrete-
event simulations to evaluate the performance of the proposed algorithm.
© 2002 Optical Society of America

OCIS code:060.4250.

1. Introduction

Over the past 10 years, backbone networks have experienced substantial development. Op-
tical fibers have been widely used as the main medium in the backbone network to increase
bandwidth. However, the networks at the last mile, from the Internet providers to the end
users, still experience insufficient resources. Recent studies1,2 have shown that passive op-
tical networks (PONs) are the feasible solution to the last-mile problem. With inexpensive
passive optical components, the optical fiber could be brought to buildings and homes; thus
we could expect great increases in the bandwidths of the access networks for meeting the
demands of delivering multimedia services to end users.

One possible implementation of the PON is the single-hop passive-star-coupled topo-
logy3 supported by wavelength-division multiplexing (WDM). WDM is an effective tech-
nique for utilizing the large bandwidth of an optical fiber. This technique, by allowing
multiple messages to be transmitted in parallel on a number of channels, has the potential
to improve significantly the performance of optical networks. Several topologies have been
proposed for WDM optical networks.4 Different from others, the single-hop passive-star-
coupled topology, initially designed for local or metropolitan networks, can configure a
WDM optical network as a broadcast-and-select network in which all the inputs from vari-
ous nodes are combined by a WDM passive-star coupler, and the mixed optical information
is broadcasted to all destinations. With this capacity, the single-hop passive-star-coupled
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topology could be one of the solutions for the PON, which, logically, has point-to-point
communications by nature.

Efficient medium-access-control (MAC) protocols and scheduling algorithms are needed
to allocate the network resources optimally while satisfying the messages and system con-
straints. The medium access control protocols5 in a single-hop passive-star-coupled WDM
optical network environment can be divided into two main classes, namely, preallocation-
based and on-demand adaptive protocols. Preallocation-based techniques6,7 assign trans-
mission rights to different nodes in a static and predetermined manner. Reservation-based
techniques8−12 allocate a channel as the control channel to transmit global information re-
garding messages to all nodes in the system. Once such information is received, all nodes
invoke the same scheduling algorithm to determine when to transmit or receive a message
and on which data channel. In this paper we focus on reservation-based techniques.

Many research results have been published to schedule variable-length messages.8,10

Thesevariable-lengthscheduling algorithms are more general than fixed-length scheduling
algorithms and adapt better to various traffic characteristics (e.g., bursty). In addition, they
perfectly fit the current research trend of IP-over-WDM and WDM burst switching.13 We
adopt the same strategy in this paper by allowing our scheduling algorithms to handle
variable-length messages.

Our major contribution in this paper is that we develop a novel scheduling algorithm to
provide differentiated services to messages with different time constraints for reservation-
based MAC protocols in a single-hop WDM network, which has the potential to be adopted
as a passive optical access network. The objective of the scheduling is to balance the net-
work service for different kinds of messages while the messages’ time constraints can be
satisfied as much as possible. The advantage of the proposed algorithm is that the network
resource could be efficiently used to balance different network services. This advantage is
achieved by the principle that time-constrained messages have high priority for transmis-
sion while messages without time constraints could be transmitted earlier when real-time
messages have been blocked as a result of transceiver tuning and unavailability of the des-
tination nodes.

The remainder of this paper is organized as follows. Section 2 specifies the system
mode of the WDM optical network. Section 3 presents our scheduling algorithm in detail.
Section 4 shows the experimental results for evaluating the performance of the algorithm.
Finally, Section 5 concludes the paper with a summary.

2. System Model and Service

We consider message transmission in a single-hop WDM network, whose nodes are con-
nected via a passive-star coupler. The star coupler supportsC channels andN nodes in the
network.C channels, referred to as data channels, are used for message transmission. An-
other channel, referred to as the control channel, is used to exchange global information
among nodes regarding the messages to be transmitted. The control channel is the basic
mechanism for implementing the reservation scheme. Each node in the network has two
pairs of transceivers. One pair of transceivers is fixed and tuned to the control channel; the
other pair of transceivers is tunable to any of the data channels to access messages on those
channels.8

The nodes are assumed to generate aperiodic messages with variable length, which can
be divided into several equal-sized packets. The basic time interval on the data channels is
the transmission time of one packet. In our model, we assume that the basic transmission
unit is one message. The nodes are divided into two nondisjoint sets of source nodessi and
destination nodesd j . However, any node can be a source node as well as a destination node
at the same time, because there is a transmitter and a receiver at each node. A queue for the
messages waiting to be transmitted is assumed to exist at each source nodesi .

© 2002 Optical Society of America
JON 1544 November 2002 / Vol. 1, No. 11 / JOURNAL OF OPTICAL NETWORKING 387



A time-division multiple-access (TDMA) protocol is used on the control channel for
each node to access that channel. According to the TDMA protocol on the control channel,
each node can transmit a control packet during a predetermined time slot. The basic time
interval on the control channel is the transmission time of a control packet.N control pack-
ets make up one control frame on the control channel. Thus each node has a corresponding
control packet in a control frame; when this is the case, that node can access the control
channel. The length of a control packet depends on the number of messages through which
each node is allowed to broadcast control information and on the amount of control in-
formation regarding each message, such as the address of the destination node, message
length, time constraint, and so on. Figure 1 illustrates some of the basic concepts used in
our model.

The transmitted messages in our WDM network can be described by the following pa-
rameters, which are also the control information contained in the control packet for each
message to be transmitted. The source and destination nodes of a message are node ad-
dresses where the message is generated and where it should be received. The indication of
hard or soft real time of a message is a sign to show whether the message should be dropped
or still be transmitted when its time constraint is violated. The message without time con-
straint will be considered to be a non-real-time message with an infinite relative deadline.
The relative deadline of a message is the time constraint of that message. A message will
be considered to meet its time constraint when the transmission time of the message is less
than its relative deadline.
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Fig. 1. Architecture of the WDM optical network.

The network service procedure can be summarized as follows. As the control channel is
divided into time slots according to a TDMA scheme, each source nodesi can send a control
packet during time sloti on the control channel to all other nodes. The control packet
contains the information about one (at the head ofsi ’s message queue) or more messages
it intends to transmit. AfterR+F time units, whereR is the round-trip propagation delay
between a node and the star coupler andF is the time duration of a control frame, all
the nodes in the network will have the information contained in a control frame regarding
messages to be transmitted. At this point, an identical copy of a distributed scheduling
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algorithm is invoked at each node, which assigns the messages represented in the control
frame to the appropriate data channels and time slots so that the scheduled messages can
be transmitted accordingly.

3. Scheduling Algorithm

The algorithm involved in our protocol should, first of all, choose one message among
the messages at the head of each transmitter queue and then determine the time slots of a
transmission channel, which can be selected from those available channels, to the selected
message. Obviously, the differentiated service provided by the network, which is to transmit
the messages within their time constraint without much sacrifice of throughput of non-real-
time messages, can be implemented by an effective scheduling associated with the MAC
protocol.

The technique of assigning data channels and transmission time slots to the selected
messages may vary according to different WDM network models.8 One of these tech-
niques is calledearliest available time scheduling(EATS). EATS is an efficient channel-
assignment algorithm for selecting a channel and time slots to the transmitted messages. In
our WDM network model, we adopt EATS as our basic channel-assignment mechanism.
However, the choice of channel-assignment technique in our approach is independent of
the other part of our scheduling algorithm. The basic idea of the EATS algorithm is to as-
sign a message to a data channel that has the earliest available time slot among all other
channels. Once the data channel is assigned, the message is scheduled to transmit as soon
as that channel becomes available. To track channel and receiver usage and the network
situations, two tables reside on each node, which are known asreceiver available timear-
ray (RAT) andchannel available timearray (CAT). RAT records the unavailable time of
the receiver of each node from the current time in the packet slot unit. CAT records the
unavailable time of each channel from the current time. Both of them decrease dynami-
cally with time units. With this global information, the distributed EATS works as follows:
Transmit a control packet on the control channel; sort the channels on the basis of the CAT
information; choose a channel with earliest available time slot, which is the channel with
the smallest CAT value; calculate the transmission time of a message on the basis of the
two tables; update the two tables according to the newly scheduled message.

The message transmission sequence is basically a policy to determine the order of
message transmissions. There are various policies to assign priorities to the transmitted
messages.10−12 However, these priority schemes cannot be used effectively in a mixed-
traffic differentiated service environment such as the one envisioned in this paper. Our idea
is to design the scheduling algorithm such that the algorithm should first schedule the mes-
sages according to their time constraints. Then the messages without time constraints could
be scheduled while the real-time messages are waiting for transmission.

To schedule the transmission of messages according to time constraints, we can adopt
theminimum laxity first(MLF) scheme. By scheduling messages with minimum laxity first,
the MLF algorithm could be expected to schedule and transmit tightly time-constrained
messages first in order to reduce the messages’ loss rate. To schedule the transmission
of messages without time constraints, we have to seek suitable time periods during the
scheduled real-time message transmission. We noted that a period of time—when the real-
time messages are being blocked while waiting for their destinations to be free—could be
used to schedule message transmission without or with time constraints. Since the RAT and
the CAT, which contain global information on the states of the receivers and the channels,
are available to every node, this idea is feasible and can easily be implemented.

With the transmission channel and time-slots assignment technique, we combine our
real-time scheduling scheme with the insertion scheduling technique, which inserts non-
real-time message transmissions in the tolerant time period, to form a new scheduling al-
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gorithm, named theMLF with time tolerance scheduling algorithm(MLF-TTS). With this
algorithm, the differentiated service could be provided by the MAC protocols in single-hop
WDM networks. By use of the MLF-TTS, our initial objective of differentiated service
could be achieved, which is to schedule the transmission of real-time messages to meet
their time constraints as much as possible while the transmission of messages without time
constraints could also benefit. Compared with the simple MLF scheduling algorithm12 we
can expect the average message delay for the messages without time constraints to decrease
while the message loss rate or message tardy rate is kept as low as those of the MLF al-
gorithm. In addition, unlike the scheduling algorithms,10,11which aim only to decrease the
average message delay, the MLF-TTS can be expected to increase significantly the real-
time performance of the WDM MAC protocol.

After all packets of the control frame reach all nodes, the scheduling algorithm, MLF-
TTS, is called at each node to schedule the transmission of all messages represented in the
current control frame. The algorithm will sort the real-time messages according to their
time laxities and the non-real-time messages according to their message lengths. Then pri-
orities are assigned to all sorted messages. The message with the highest priority will be
the first considered to get its transmission channel and the time slots on that channel by
our channel-assignment scheme. The channel-assignment algorithm, EATS, will assign the
earliest available channel to this message. Then the delay to transmit this message will be
evaluated by the algorithm. If the delay—including the time when the message is waiting
for its assigned channel, tuning latency, and its destination to be available plus the trans-
mission time which is the length of the message—is larger than its laxity, a hard real-time
message will be dropped and a soft real-time message will be degraded to a non-real-time
message with the lowest priority. The message with the next priority will then be chosen
for scheduling. If the delay is less than its laxity, the scheduling is fixed to transmit the
message thereafter. The algorithm will then consider arranging another message transmis-
sion by using the period of the waiting delay,tws, which is caused by correct tuning and the
destination node of the scheduled message being available. The algorithm will further look
for the current earliest available destination node and the candidate messages represented
in the same control frame, either real time or non real time, with destination to this node.
The algorithm will select one message from those candidates to schedule its transmission if
the waiting time,twe, for this message to get the earliest available destination plus its trans-
mission time, is less than the waiting timetws. If this message can be found, it is scheduled
for transmission on the earliest available channel to the earliest available node. After this
is done, or no such message is found under this condition, the algorithm will continue to
schedule other messages according to their priorities. After all the messages represented in
the current control frame have been scheduled, the source nodes will then know on which
channel to transmit which message at the heads of their message queues and at what time.
The receiver nodes will also know to which channel they should tune and at what time to
receive the appropriate message.

The MLF-TTS algorithm can be expressed in detail as follows: We assume that there
areM nodes andC channels. The messages have variable lengths,l , following an expo-
nential distribution. The real-time messages have time constraints with laxity,p, following
an exponential distribution, too. The messages can be transmitted from source nodei to
destination nodej, wherei 6= j andi, j ∈ g. The RAT table can be expressed as an array of
M elements, one for each node. RAT[i] = w, wherei = 1,2, . . . ,M, means that nodei will
be free afterw time slots. The CAT table can be expressed as an array ofC elements, one
for each channel. CAT[ j] = v, where j = 1,2, . . . ,C, means that channelj will be available
afterv time slots.
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MLF-TTS Algorithm

Begin:
Wait for a control packet on the control channel returning;

Sort the real-time messages represented in the control frame on the basis of their laxities;

Sort the non-real-time messages according to their lengths;

Assign the transmission priority to different messages with real-time messages;

Always have higher priorities;

S1:

Assign transmission channel to the current highest priority until no message left;

Search CAT[i] for a channel with the earliest available time;

Use the earliest available channel k, to transmit the selected message;

Calculate r = CAT[ j] + T, t1 = max(CAT[k], T), t2= max(t1+ R, r); where T is the
transmitters’ tuning time, R is the propagation delay;

Schedule the message transmission time at t = t2−R;

If waiting time, tws,+ transmission time (message length), ls + R > message laxity, ps ,
drop it if it is a hard real-time message, degrade it to non-real-time message if it is a
soft real-time message; return to S1 to schedule another message;

If waiting time, tws,+ transmission time (message length), ls+R< message laxity, ps up-
date RAT[ j] = t2+ ls, CAT[k] = t2−R+ ls; where tws = t−current time;

Search for the current least visited node by min(RAT[ j ]);

Search for the candidates with destination to min(RAT[ j ]);

S2:

Select one message to schedule by testing availability of time tolerance until all considered;

If waiting time, twe,+transmission time (message length), le+R> waiting time, tws, return
to S2;

If waiting time, twe,+transmission time (message length), le + R < waiting time, tws, as-
sign the same channel to the message for the destination node min(RAT[ j ]), update
RAT[min(RAT[ j])] = twe+ le+R; return to S1;

End.

The complexity of the MLF-TTS scheduling algorithm can be evaluated according to its
operation. We find that the new algorithm has only one sequence procedure and three search
procedures.

The sequence procedure is to sort the messages represented in one control frame ac-
cording to their time constraints or message lengths. The first searching procedure is to
search for a channel with the earliest available time among all the channels in the network,
and the second procedure is to search for a node with the earliest available time among
all the nodes in the network. The final procedure is to search for a set of messages with
destination to the earliest available node.

Let us assume that the number of nodes is always more than the number of channels.
The number of times to invoke the sorting procedure is 1 only when all the messages rep-
resented in one control frame are scheduled. The complexity of a typical sorting algorithm
is O(nlog2n), wheren is the number of nodes in the network. The complexity of a search-
ing procedure isO(n) for each message scheduling. The worst-case running time of the
algorithm isO(nlog2n)+3nO(n). Finally, the complexity of the algorithm could beO(n2)
for scheduling one batch of messages. The complexities for the MLF and shortest message
first (SMF) algorithms can be evaluated on the basis of their operations. With both algo-
rithms there is a sorting procedure for scheduling one batch of messages and one searching
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procedure for each message scheduling. The worst-case running time of each algorithm is
O(nlog2n)+nO(n). And finally, their complexities also includeO(n2), because the MLF-
TTS algorithm has just two more searching procedures for each message scheduling.

4. Experimental Evaluation

In this section we present the results of a set of performance-comparison experiments to
evaluate the performance of our proposed scheduling algorithm. In the experiments we
study the performance of the network with the passive-star-coupler-based architecture when
we have integrated traffic (including messages with or without time constraint) with varying
message arrival rates.

4.A. Experiment Design

The parameters involved in our simulation include the number of nodes, which is set to
50, and the number of channels, which is set to 4. Tuning latencies are set to 0 time units
in the experiments to focus the results on the salient features of the proposed scheduling
algorithm. Round-trip propagation delay is set to 10 time units. However, we do not include
this delay in the figures, because it is the same for all algorithms.

The channel-assignment strategy chosen for all candidate algorithms is the EATS al-
gorithm. The candidate algorithms for the performance-comparison experiments are the
SMF, the MLF, and the MLF-TTS scheduling algorithms. In comparing the SMF schedul-
ing algorithm, we want to show that the MLF-TTS scheduling algorithm can improve the
real-time performance of the network. The SMF algorithm sequences messages according
to message length in order to achieve good performance in terms of average message delay.
But it does not consider scheduling the transmission of messages with time constraint. In
comparing the MLF scheduling algorithm, we want to show that the MLF-TTS schedul-
ing algorithm can improve the network performance of messages without time constraint.
The MLF algorithm schedules message transmission on the basis of the time constraint of
messages in order to achieve good real-time performance in terms of message loss rate.
However, we achieve real-time performance by sacrificing the transmission of non-real-
time messages.

4.B. Experiment Results

The experimental results presented Figs. 2–4 show the relationship between the system
performance and the system traffic load in terms of message arrival rate when real-time
messages and non-real-time messages are transmitted.

Message length is a random variable following an exponential distribution. A Poisson
message arrival rate across all nodes is considered that ranges from 0.002 to 0.005 mes-
sages per unit time as its mean for each node. Destination nodes for messages are chosen
according to a uniform probability distribution.

The message time constraint is expressed by message laxity, which is a random variable
following an exponential distribution. The behavior of the candidate algorithms is observed
over a simulation period of 1,000,000 time units. Each point in the performance graphs is
the average of 11 independent runs. The metrics of real-time performance in the exper-
iments are themessage loss ratefor hard real-time message transmission. Theaverage
message delayand thesystem throughputare general performance metrics to describe the
network performance. The average message delay is defined as the average time a message
spends in the system, which is composed of message transmission delay, queuing delay,
and propagation delay. The system throughput is defined as number of packets that are
transmitted per unit of time. The specific message parameters used are as follows: The
mean message arrival rate varies from 0.002 to 0.005; the mean message length is set to 20;
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the mean message laxity is set to 25; and each type of message occupies 50% of the total
population. For real-time messages, one half of them are hard real-time messages, and the
other half are soft real-time messages; each occupies 25% of the total population.

For all the candidate algorithms, the principle of scheduling the transmission of the
real-time messages is that any hard real-time message, which is later than its laxity, will be
dropped; any soft real-time message, which is later than its laxity, will still be transmitted.

Fig. 2. Message delay versus message arrival rate.

Figure 2 presents the average message delay of all algorithms when the messages ar-
rival rate changes. The figure shows that the SMF algorithm performs better than the other
algorithms. The reason lies in that, unlike the MLF algorithm, the SMF algorithm always
tries to arrange short messages to transmit first. This will decrease the waiting time of mes-
sages in the network. However, our new scheduling algorithm has achieved performance
similar to that of the SMF algorithm. It has substantially improved the performance of the
MLF algorithm in terms of average message delay. The improvement has reached more
than 15%. What makes this achievement possible is that the MLF-TTS algorithm takes the
time period when the scheduled message is waiting for its destination available to insert
other message’s transmission.

Figure 3 shows the relationship between the average message delay and the system
throughput. From Fig. 3 we can see that the performance of the EATS algorithm and the
MLF-TTS algorithm are better than that of the MLF algorithm in the sense that at a cer-
tain value of system throughput the average message delay of the system using the EATS
algorithm or the MLF-TTS algorithm is always less than that of the system using the MLF
algorithm. This is shown clearly at the point where the throughput approaches and exceeds
3.

Figure 4 presents the real-time performance of the system using different algorithms.
The performance of the MLF algorithms is much better than that of the SMF algorithms and
the MLF-TTS algorithm. The reason for this result is that the MLF algorithms always try to
transmit the messages with short laxity first so that the message loss rate will be kept at the
lower level. The SMF algorithm keeps the message loss rate at the highest level. The reason
for this is that the SMF algorithm always schedules the shortest message first, ignoring the
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Fig. 3. Average message delay versus throughput.

Fig. 4. Message loss rate versus message arrival rate
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laxities of messages so that longer messages with tighter time constraints could not be
scheduled in time. As a result, the real-time performance of the network will be impaired.
However, although the message loss rate of the MLF-TTS algorithm is not exactly as low
as that of the MLF algorithm, it has greatly improved the real-time performance of the
network. The improvement in terms of the message loss rate by the MLF-TTS algorithm
can reach up to 30% that of the SMF algorithm when the traffic is heavy. This is because the
MLF-TTS algorithm follows the principle of the MLF algorithm. Moreover, the insertion
of scheduling other messages will not violate the MLF principle. So it achieves almost the
same real-time performance as that of MLF algorithm.

The following points summarize our overall results: (1) Our newly proposed algorithm,
MLF-TTS, always performs better than the MLF algorithm in terms of average message
delay and throughput. (2) Our newly proposed algorithm, MLF-TTS, performs better than
the SMF algorithm in terms of message loss rate. (3) The MLF-TTS algorithm can balance
both types of message transmission without too much mutual impairment.

5. Conclusion

In this paper we have proposed that the single-hop passive-star-coupler-based topology sup-
ported by WDM could be one of the solutions to realizing passive optical access networks.
We have also proposed what to our knowledge is a novel reservation-based scheduling al-
gorithm, named MLF-TTS, for providing differentiated transmission service to messages
with and without time constraints in single-hop passive-star-coupler-based WDM optical
networks. Using this scheduling algorithm, we can provide transmission service to either
hard or soft real-time messages to meet their time constraints as much as possible, while
the transmission of non-real-time messages can also be improved. The results of our exper-
iments showed that, with our scheduling algorithm, almost the same real-time performance
can be achieved as that of the simple real-time scheduling algorithm; however, the trans-
mission performance of non-real-time messages can be improved simultaneously.
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